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Chapitre 1

Analyse cinématique du mouvement

Cinématique : La cinématique est l’étude des mouvements en fonction du
temps, sans se préoccuper des causes de ces mouvements.

Point matériel : On appelle point matériel (ou masse ponctuelle) un système méca-
nique que l’on modélise par un point géométrique M , auquel est associée une masse
m. Ce modèle correspond à un corps dont la taille est négligée que l’on assimile à
un point.

On s’intéresse ici à la mécanique du point, par opposition à la mécanique du solide
(voir section ??).

1.1 Analyse en translation

1.1.1 Apports mathématiques

Repères

x⃗

y⃗

z⃗

A

O

(a) Repère à trois dimensions
R(O, x⃗, y⃗, z⃗)

x⃗

y⃗

A

O

(b) Repère à deux dimensions R(O, x⃗, y⃗)

Repère à trois dimensions :
Un repère tridimensionnel s’écrit R(O, x⃗, y⃗, z⃗), avec :
— O : l’origine du repère,
— (x⃗, y⃗, z⃗) : les vecteurs unitaires dans chaque axe
Un point A dans ce repère est repéré par ses coordonnées XA, YA et ZA. On
peut écrire le vecteur

−→
OA ainsi :
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−→
OA =

XA

YA

ZA


Repère à deux dimensions :
En 2D, le repère s’écrit R(O, x⃗, y⃗). Un point A est alors repéré par :

−→
OA =

(
XA

YA

)
Vecteurs

Un vecteur est représenté par un segment orienté (une flèche), ayant pour extré-
mités un point de départ et un point d’arrivée. Si A et B sont deux points distincts,
le vecteur

−→
AB possède trois éléments caractéristiques :

— sa direction (la droite (AB)) ;
— son sens (il y a deux sens possibles de parcours de la droite (AB) : de A vers

B ou de B vers A) ;
— sa norme (ou sa longueur, la longueur du segment [AB], on écrit ||

−→
AB||).

Les coordonnées d’un vecteur
−→
AB peuvent être obtenues à partir des coordonnées

des points A(XA, YA) et B(XB, YB) tels que :

−→
AB =

(
XAB

YAB

)
=

(
XB −XA

YB − YA

)
La norme d’un vecteur peut être obtenue par la formule suivante qui découle

directement du théorème de Pythagore :

||
−→
AB|| =

√
XAB

2 + YAB
2

Cette formule est généralisable notamment dans l’espace, on a alors :

||
−→
AB|| =

√
XAB

2 + YAB
2 + ZAB

2

Relation de Chasles :

Soit A un point arbitraire, on construit les vecteurs
−→
AB et

−−→
BC.−→

AC représente alors le vecteur somme.

x

y

0

A

B

C

−→
AB

−−→
BC

−→
AC

−→
AB +

−−→
BC =

−→
AC
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Quels que soient les points A, B et C :

−→
AB +

−−→
BC =

−→
AC

ou

−→
AB −

−−→
CB =

−→
AC

car
−−→
BC = −

−−→
CB

Remarque : Cette relation exprime que pour aller du point A au point C, on
peut passer par un point intermédiaire B quelconque. La somme des deux "dépla-
cements"

−→
AB et

−−→
BC est équivalente au déplacement direct

−→
AC.

Exercice 1. Déterminer les composantes du vecteur
−→
BA, sachant que :

A(xA = 4, yA = 3), B(xB = 2, yB = 1)

Exercice 2. Déterminer la norme du vecteur
−→
BA

Exercice 3. Après l’analyse d’une vidéo, les coordonnées successives d’un objet
en mouvement ont été relevées dans un repère orthonormé. Les positions sont les
suivantes :

Point x y
A 2 3
B 5 7
C 9 4
D 12 8

a. Calculer les distances entre les positions successives
b. En déduire la distance totale parcourue de A à D en passant par B et C.

Trigonométrie

RAJOUTER QQ PART FORMULES cos(pi/2 -x) = sin(x)...
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0

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

O

Note : un radian est la mesure
d’un angle au centre d’un cercle
ayant un arc de même longueur
que le rayon. Un tour complet
équivaut à 2π radians ou 360 de-
grés. Un demi tour équivaut à π
radians ou 180 degrés. ‘

Angles usuels :

Degrés 0◦ 30◦ 45◦ 60◦ 90◦

Radians 0
π

6

π

4

π

3

π

2

Avec θ l’angle en radian et R le
rayon du cercle, on a la longueur
de l’arc de cercle s telle que :

s = Rθ

Passer de radians à degrés et inversement :
On sait qu’un tour complet vaut 360◦ = 2π radians.
On peut donc utiliser un produit en croix pour convertir :

— De radians à degrés : on multiplie par
180

π

Exemple :
π

3
rad =

π

3
× 180

π
= 60◦

— De degrés à radians : on multiplie par
π

180
Exemple : 45◦ = 45× π

180
=

π

4
rad

Cela vient du fait que :
Si 180◦ = π rad, alors par produit en croix :

x◦ = x× π

180
rad et x rad = x× 180

π

◦

Sinus et cosinus : soit M un point sur le cercle trigonométrique d’angle θ, on
définit cosθ et sinθ comme les coordonnées (x, y) du point M . Si le rayon du cercle
est de longueur R, les coordonnées du point M sont alors Rcosθ et Rsinθ.

Le rayon du cercle étant égal à 1, on a d’après le théorème de Pythagore :

sin2(θ) + cos2(θ) = 1

Valeurs remarquables :

θ 0 π
6

π
4

cos(θ) 1
√
3
2

√
2
2

sin(θ)

sin(θ) 0 1
2

√
2
2

cos(θ)
π
2

π
3

π
4

θ

La Tangente peut se définir telle que tan(θ) = sin(θ)
cos(θ)

. Elle intervient souvent en
biomécanique pour le calcul de l’angle d’un vecteur par rapport à l’horizontale.
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Egalement, dans un triangle rectangle, on a :

SOHCAHTOA :

— sin(θ) =
opposé

hypoténuse

— cos(θ) =
adjacent

hypoténuse

— tan(θ) =
opposé

adjacent
A B

C

adjacent

opposé
hypoténuse

θ

Application aux vecteurs

x

z

v⃗0

v0x

v0z

α

Décomposition du vecteur vitesse : On a pu voir que si le rayon du cercle
est de longueur R, les coordonnées du point M sont alors Rcosθ et Rsinθ. Ici le
rayon du cercle serait de longueur v0, les coordonnées du vecteur v⃗0 sont donc :

— v0x = v0 cos(α) : composante horizontale
— v0z = v0 sin(α) : composante verticale
Résultat retrouvable avec SOHCAHTOA.

Exercice 4. Déterminer les composantes du vecteur v⃗, sachant que ||v⃗|| = 12 et
l’angle par rapport à l’horizontale θ = π

6
sans calculatrice. De même avec θ = π

6
par

rapport à la verticale (ne pas hésiter à faire un schéma).

Exercice 5. Dans une course d’orientation, les coureurs suivre un parcours comme
indiqué sur la figure, où sont donnés la norme et l’orientation des 3 premiers segments
de la course qui séparent les 3 premières balises.
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x

y

Point de départ : O

2 km

1,5 km

1,5 km

45◦

15◦

120◦

Quel est le déplacement entre la dernière balise et le point de départ ? Exprimer le
résultat sous forme d’un vecteur.

Dérivation

La dérivation d’une fonction est introduite par l’étude de la droite tangente à sa
courbe représentative. Elle est un outil pour l’étude de ses variations et permet de
résoudre de nombreux problèmes de cinématique notamment.

a. Taux de variation

Soit f une fonction définie sur un intervalle contenant A et M .

x

y

a a+ h

f(a)

f(a+ h)

A

M

h

f(a+ h)− f(a)

Le taux de variation de la fonction f entre A et M est défini par le coefficient
directeur de la droite (AM) sécante à la courbe. Il traduit l’évolution moyenne de
la fonction f de A à M .
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Le coefficient directeur de la droite (AM) s’obtient par la formule générale :

yM − yA
xM − xA

Ici on a alors :
f(a+ h)− f(a)

(a+ h)− a
=

f(a+ h)− f(a)

h

Le taux de variation d’une position correspond donc à l’évolution moyenne de
celle-ci soit la vitesse moyenne au cours d’un intervalle de temps. On retrouve bien :

vmoy =
∆O⃗M

∆t

avec O⃗M le vecteur position, ∆t l’intervalle de temps (ex. t1 − t2).

De façon analogue, le taux de variation d’une vitesse correspond alors à l’accé-
lération moyenne au cours de l’intervalle de temps.

Exercice 6. Dans une piscine de 25 mètres, un élève a mis 31 secondes pour
parcourir la distance en brasse.
Quelle est sa vitesse moyenne en m/s ?

Exercice 7. Sur un parcours de 200 mètres en nage papillon, un athlète atteint
les 50 mètres en 30 secondes et atteint les 200 mètres en 120 secondes.
Quelle est sa vitesse moyenne entre ces deux points ?

b. Nombre dérivé
Pour avoir une idée plus précise de l’évolution de la position d’un point, il faut
alors réduire l’intervalle de temps h. D’un point de vue mathématique, cela revient
à calculer la dérivée de la fonction f en un point a. Cela correspond alors au taux
de variation quand h tend vers 0, c’est-à-dire le coefficient de pente de la tangente
de la courbe de f en a.

Alors on a :
f ′(a) = lim

h→0

f(a+ h)− f(a)

h

En biomécanique, la vitesse instantanée en un instant ti correspond au nombre
dérivé de la position en cet instant. Cela revient à :

v⃗(ti) = lim
∆t→0

∆O⃗M

∆t

On notera :

v⃗(ti) =
dO⃗M

dt

De manière analogue, l’accélération instantanée en un instant ti correspond au
nombre dérivé de la vitesse en ce même instant. On a :

a⃗(ti) =
dv⃗

dt

8



La façon la plus commode de calculer un nombre dérivé pour l’application en
biomécanique est de dériver la fonction associée. Pour autant, on peut toujours l’ap-
proximer en réalisant le taux de variation avec ∆t très petit lorsque cela est possible
(par exemple avec une fréquence d’échantillonnage importante, comme lors d’un
100m en athlétisme où les temps sont mesurés au millième de seconde près).

c. Fonction dérivée

La fonction dérivée de f est la fonction f ′ qui lui associe en chaque point son

nombre dérivé. En biomécanique, on notera f ′ =
df

dt
pour montrer que l’on dérive

par rapport au temps t.
Voici quelques dérivées usuelles en biomécanique :

Fonction f(t) Dérivée f ′(t)
a (constante) 0

t 1
at+ b a

at2 + bt+ c 2at+ b

Plus généralement, on a la dérivée d’une fonction de la forme tn qui est égale à
ntn−1. Par exemple, avec f(t) = t5, on a :

df

dt
= 5t5−1 = 5t4

Alors, en cinématique, si la position suit une fonction x(t), la vitesse définie
comme la dérivée de la position x(t) peut s’écrire sous les formes suivantes :

dx

dt
= ẋ = x′(t)

Pour finir, une interprétation concrète de la dérivée revient à dire qu’une fonc-
tion f dérivée positive équivaut à une fonction f croissante. De manière analogue,
une fonction f dérivée négative équivaut à une fonction f décroissante. Enfin, une
fonction f dérivée nulle équivaut à une fonction f constante.

Exercice 8. À l’aide de l’équation du taux de variation, démontrer que la dérivée

de la fonction f(t) = mt+ p vaut
df

dt
= m.

Exercice 9. Un sprinter parcourt un 100 mètres, et sa position x(t) en mètres en
fonction du temps t en secondes est modélisée par l’équation suivante :

x(t) = −0.067t3 + 1.67t2

a. Calculer la vitesse et l’accélération du sprinter en fonction du temps.
b. Quelle est la vitesse du sprinter au moment où il franchit la ligne d’arrivée

(au bout de 10 secondes) ?
c. Quelle est son accélération à ce moment-là ?
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Primitives et intégrales

Une primitive F d’une fonction f est une fonction dont la dérivée est égale à
f , c’est-à-dire :

F ′ =
dF

dt
= f.

Cela correspond à l’opération inverse de la dérivation.
Le calcul d’une primitive est plus complexe que celui d’une dérivée, notamment

à cause de la non-unicité des primitives. En effet, si 4t est une primitive de 4, alors
4t+1, 4t+2, etc., en sont aussi. On ajoute donc en général une constante arbitraire
C à la primitive.

Voici quelques primitives usuelles utiles en biomécanique (avec C = constante
arbitraire) :

Fonction f(t) Primitive F (t)
0 C
a at+ C
at 1

2
at2 + C

Plus généralement, pour une fonction de la forme f(t) = tn, une primitive est :

F (t) =
1

n+ 1
tn+1 + C (si n ̸= −1).

Exemple : pour f(t) = t5, une primitive est :

F (t) =
1

6
t6 + C car

d

dt

(
1

6
t6
)

= t5.

Les primitives sont principalement utilisées dans deux contextes en biomécanique :
— Le calcul intégral, qui permet de déterminer l’aire sous une courbe.
— La détermination des équations horaires, notamment pour retrouver la

position à partir de la vitesse, ou la vitesse à partir de l’accélération.

Pour le moment, on interprète une intégrale définie comme une aire sous la courbe
d’une fonction f(t) entre deux instants t1 et t2 :∫ t2

t1

f(t) dt = aire sous la courbe de f entre t1 et t2.

D’un point de vue algébrique, une intégrale d’une fonction f(t) entre les instants
t1 et t2 est définie comme la différence d’une primitive de f aux instants t1 et t2 :∫ t2

t1

f(t) dt = F (t2)− F (t1)

Ainsi, si on remplace f(t) par la vitesse et F (t) par la position, l’intégrale de la
vitesse de t1 à t2 correspond à la différence de la position entre ces mêmes instants,
c’est-à-dire la distance parcourue.

Exemple : position à partir de la vitesse
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Supposons qu’un objet se déplace en ligne droite avec une vitesse constante de
v = 2 m/s entre t = 0 s et t = 5 s.

t

v(t)

0 5

v = constante

Aire = (t2 − t1) · v

Sur le graphique vitesse/temps, la courbe est un segment horizontal. L’aire sous
la courbe correspond à un rectangle (ou triangle dans le cas où la vitesse aurait été
croissante), et représente la distance parcourue :

Aire = base × hauteur = (5− 0)× 2 = 10 m.

Dans le cas d’une vitesse constante, on retrouve alors l’équation comme quoi :

v =
∆x

∆t

Donc, l’objet a parcouru 10 m entre t = 0 s et t = 5 s.

Ce type de raisonnement géométrique (aire sous une courbe simple) permet de calcu-
ler facilement la distance parcourue à partir de la vitesse ou l’évolution de la vitesse
à partir de l’accélération.

Exercice 10. Déterminer une primitive des fonctions suivantes :
a. f(t) = 8
b. f(t) = 5t
c. f(t) = 8t2

Exercice 11. À partir de l’accélération a(t) = 10 (constante), déterminer :
a. La fonction vitesse v(t), primitive de a(t)
b. La fonction position x(t), primitive de v(t)

Exercice 12. Calculer l’intégrale suivante de façon géométrique :∫ 10

4

2t dt

Exercice 13. À partir de l’équation de vitesse trouvée à l’exercice 11, calculer la
distance parcourue entre t = 4 s et t = 8 s. On prendra C1 = 1.
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1.1.2 Cinématique : définitions

Un mouvement rectiligne est un déplacement qui s’effectue le long d’une ligne
droite.

Un mouvement circulaire est un déplacement qui s’effectue le long d’un arc de
cercle dont le centre est l’axe de rotation.

- Si la valeur de la vitesse reste constante, on parle de mouvement uniforme.
Dans ce cas, on a :

v⃗ = Cst ⇔ a⃗ = 0

- Un mouvement est accéléré lorsque la norme de la vitesse augmente, et
décéléré lorsqu’elle diminue. Si la vitesse et l’accélération sont de même
sens, la vitesse augmente ; s’ils sont de sens opposés, la vitesse diminue.

- Si l’accélération est constante, on parle de mouvement uniformément ac-
céléré ou décéléré.

Une trajectoire parabolique (ou balistique) est une trajectoire décrite par un
objet soumis uniquement à son poids possédant une vitesse initiale, comme un pro-
jectile lancé dans l’air.

L’objet suit une parabole orientée vers le bas. On peut y caractériser la portée et
la hauteur maximale. Ces paramètres dépendent notamment de la vitesse initiale,
de l’angle d’envol et de la hauteur initiale.

x

y

O

Angle constant : α = 60◦

v1 <v2 <v3

α

(a) Influence de la vitesse initiale

x

y

O

Vitesse constante
α1 = 30◦

α2 = 45◦

α3 = 60◦

α4 = 75◦

(b) Influence de l’angle d’envol

1.1.3 Équations horaires

Trajectoire rectiligne
Une équation horaire est une équation qui permet de décrire les paramètres cinéma-
tiques d’un objet en fonction du temps

Exercice d’application. Soit une bille de masse m, assimilée à un point matériel,
lâchée sans vitesse initiale du point O pris comme origine de temps et d’espace. On
prendra l’accélération ay = g = 10 m/s². Déterminer par intégration la vitesse en
fonction du temps.

12



Solution et détermination de la constante C
On sait que

dv

dt
= a(t), donc v(t) =

∫
a(t) dt. Alors :

v(t) =

∫
a(t) dt =

∫
10 dt = 10t+ C

Pour déterminer C, on posera t = 0. L’objectif est d’isoler la constante C. Alors on
trouve :

v(0) = 10× 0 + C ⇒ C = v(0)

On remarque que dans le cas d’équations horaires, la constante C correspond en fait
à la condition initiale, que l’on notera pour la vitesse v0.
La solution est donc :

v(t) = 10t+ v0 = 10t+ 0 = 10t

Exercice 14. Déterminer la position de la bille à partir de l’équation de la vitesse
trouvée plus tôt.

Exercice 15. Déterminer la vitesse et la position de la bille avec maintenant une
vitesse initiale v0 = 10 m/s (la bille est lancée vers le haut).

Exercice 16. Lors d’un exercice de squat, un sportif déplace une charge vertica-
lement le long de l’axe z, orienté vers le haut. On modélise le mouvement selon trois
phases successives :

Phase 1 — Descente (excentrique) : le mouvement commence à t = 0, la
vitesse initiale est nulle. La charge est soumise à une accélération constante
a1 = −0.25 m/s2. Cette phase dure t1 = 2.0 s.
Phase 2 — Arrêt momentané : la charge s’immobilise brièvement à sa
position la plus basse pendant une durée négligeable (∆t = 0.1 s). Sa vitesse
est alors nulle.
Phase 3 — Montée (concentrique) : la charge repart vers le haut avec
une accélération constante a2 = +0.11 m/s2, en partant d’une vitesse nulle.
Cette phase dure t2 = 3 s.

a. Établir les équations horaires de la vitesse v(t) pendant :
— La phase de descente (0 ≤ t ≤ t1)
— La phase de montée (démarrant à t = t1 +∆t, pour une durée de t2)

b. Tracer le graphe de la vitesse v(t) en fonction du temps sur l’ensemble du
mouvement.

c. Caractériser la trajectoire lors de chaque phase, justifier.
d. Déterminer la vitesse moyenne de la charge sur chaque phase du mouve-

ment.
e. Calculer la distance totale parcourue.

Trajectoire parabolique
On remarquera que lorsque a(t) = g, c’est-à-dire que l’accélération est égale à l’accé-
lération gravitationnelle, on parle de mouvement en chute libre. On retrouve alors
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des trajectoires paraboliques (ou balistiques) ou bien rectilignes vers le bas.

Exercice d’application. Lors d’un lancer franc, un joueur de basketball lance un
ballon depuis une hauteur de h0 (correspondant à la hauteur approximative de ses
mains au moment du tir). Le ballon est lancé avec une vitesse initiale v0, formant
un angle de θ avec l’horizontale. On prendra l’accélération ay = −g.
On suppose que l’origine du repère est au niveau du sol, juste sous le point de
lancement, et que le mouvement a lieu dans un plan sagittal (2D vue de côté). +
SCHEMA

Déterminer les équations horaires x(t) et y(t) du centre du ballon.

Solution — Détermination des équations horaires

On sait que
dv⃗

dt
= a⃗(t), donc v⃗(t) =

∫
a⃗(t) dt. Alors :

vx(t) =

∫
ax(t) dt =

∫
0 dt = v0x = v0 cos(θ)

vy(t) =

∫
ay(t) dt =

∫
−g dt = −g · t+ v0y = −g · t+ v0 sin(θ)

De plus,
d
−−→
OM

dt
= v⃗(t) avec

−−→
OM le vecteur position, donc

−−→
OM(t) =

∫
v⃗(t) dt. Alors :

x(t) =

∫
vx(t) dt =

∫
v0 cos(θ) dt = v0 cos(θ) · t+ x0

y(t) =

∫
vy(t) dt =

∫
(−g · t+ v0 sin(θ)) dt = −1

2
gt2 + v0 sin(θ)t+ y0

En prenant x0 = 0 et y0 = h0, on obtient finalement :
x(t) = v0 cos(θ) · t

y(t) = −1

2
gt2 + v0 sin(θ)t+ h0

On remarque que l’équation horaire de la position verticale y(t) est de la forme :

y(t) = at2 + bt+ c

Il s’agit donc d’un polynôme du second degré. Ce type de fonction permet
de modéliser les trajectoires paraboliques que l’on rencontre fréquemment en bio-
mécanique, notamment lors de mouvements en chute libre.

Dans ce contexte, il est utile de maîtriser l’étude de ces fonctions pour, par
exemple, déterminer la hauteur maximale de la balle, le temps pour y parvenir, si
le ballon atteint le panier...
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1.1.4 Apports mathématiques : polynômes du 2nd degré

On appelle fonction polynôme du second degré toute fonction f définie sur R
par :

f(x) = ax2 + bx+ c

Avec a ̸= 0.

Etude des variations

— si a > 0, alors f est strictement décroissante puis strictement croissante
— si a < 0, alors f est strictement croissante puis strictement décroissante

x

y

−a a

s
C1

(a) Parabole avec a < 0

x

y

−a a

s
C1

(b) Parabole avec a > 0

Equation du second degré

Une équation du second degré est une équation du type

ax2 + bx+ c = 0

Résoudre cette équation consiste à déterminer l’ensemble des nombres x qui
vérifient l’égalité.

Méthode générale Cette méthode passe par l’identification des coefficients a, b
et c de l’équation, puis par le calcul du discriminant ∆ = b2 − 4ac et enfin le calcul
des résultats selon le signe de ∆.

Si ∆ < 0 le polynôme n’admet pas de racine réelle. Ce cas n’arrive pas en
biomécanique.

Si ∆ = 0, ce qui est très improbable en biomécanique, le polynôme admet une
racine double :

x0 = − b

2a

Enfin, si ∆ > 0 le polynôme admet deux racines distinctes :

x1 =
−b−

√
∆

2a
et x2 =

−b+
√
∆

2a

En général en biomécanique, une solution sera positive et une négative. La solution
positive sera alors l’unique solution à considérer puisqu’une solution négative n’a
souvent pas de sens dans les problèmes.
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Exercice 17. On donne trois fonctions f1, f2 et f3 définies par :

f1 = 4x2 + 4x− 8 = 0 ; f2 = 2x2 − 2x+ 0.5 = 0 ; f3 = 3x2 + x+ 8 = 0

Résoudre les trois équations

Exercice 18. Trouver à quel instant un projectile atteint le sol, sachant que sa
trajectoire verticale est décrite par l’équation suivante :

h(t) = −4, 9t2 + 29, 4t+ 1, 5

Exercice 19. Déterminer la portée du projectile connaissant l’instant t auquel
il atteint le sol, sachant que sa trajectoire horizontale est décrite par l’équation
suivante :

x(t) = 15, 2t+ 2, 3

Extremum L’extremum d’une fonction correspond à un maximum ou un mini-
mum sur un intervalle donné. Cela peut par exemple correspondre à l’apogée (hau-
teur maximale) de la trajectoire d’un projectile.

L’extremum d’une fonction polynôme du second degré vaut toujours

β = f(α) = −∆

4a
avec α = − b

2a

Ces termes sont retrouvables par le calcul et n’ont pas vocation à être mémorisés.
Dans le cas spécifique d’une trajectoire parabolique, on pourrait écrire :

hmax = y(th) = −∆

4a
avec th = − b

2a

En considérant hmax la hauteur maximale atteinte (apogée) et th l’instant associé.

En effet, l’extremum du polynôme du second degré est atteint quand le taux de
variation de celui-ci sera égal à 0. C’est-à-dire quand la droite tangente à la courbe
est horizontale (voir fig.1.4).

x

y

−a a

s
C1

M

Tangente en s (pente = 0)

Tangente en M

Figure 1.4 – Parabole avec a > 0 et tangentes

C’est alors équivalent au fait que la dérivée de la fonction soit égale à zéro. On
peut alors poser, avec f(x) une fonction polynôme du second degré, pour trouver
l’extremum :

f ′(x) = 0
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Exercice 20. Calculer la dérivée de f(x) = ax2 + bx+ c

Exercice 21. Résoudre l’équation f ′(x) = 0

Exercice 22. Trouver à quel instant un projectile atteint sa hauteur maximale,
sachant que sa trajectoire verticale est décrite par l’équation suivante :

h(t) = −4, 9t2 + 29, 4t+ 1, 5

Exercice 23. Déterminer la hauteur maximale atteinte par le projectile (maxi-
mum de h(t))

Exercice 24. Soit un projectile dont la trajectoire est décrite par les équations
horaires suivante : {

x(t) = 12.8t+ 1.2

y(t) = −4.9t2 + 24.5t+ 2.1

a. Déterminer l’équation de la trajectoire y(x).
b. À quelle distance horizontale l’apogée est-elle atteinte ?

Exercice 25. Trouver à quel instant un projectile atteint le sol sans utiliser le
discriminant, sachant que sa trajectoire verticale est décrite par l’équation suivante
avec hauteur initiale nulle :

h(t) = −4, 9t2 + 29, 4t

Exercice 26. Un joueur de volley-ball effectue un service depuis une position si-
tuée à 1 mètre avant la ligne de fond de son terrain. Le terrain de volley-ball mesure
18 mètres de long, le filet est placé à 9 mètres de chaque ligne de fond et sa hauteur
est de 2,43 mètres.

Conditions initiales :
— Position initiale : x0 = 0 m, y0 = 2.1 m
— Vitesse initiale : v0 = 13 m/s sous un angle de 28◦ au dessus de l’horizontale
— Accélération verticale : g = 9.8 m/s²
— Accélération horizontale nulle

a. Déterminer les équations horaires x(t) et y(t) du mouvement de la balle.
b. La balle franchit-elle le filet ?
c. La balle retombe-t-elle dans le terrain adverse ou est-elle out ?
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1.2 Analyse en rotation
Un mouvement circulaire est caractérisé par le déplacement d’un point matériel

dont la trajectoire est un cercle. De manière analogue aux mouvements rectilignes,
le mouvement circulaire peut être uniforme, accéléré, uniformément accéléré...

On peut alors caractériser la position du point non plus en coordonnées car-
tésiennes (avec x et y) mais en coordonnées polaires. Le point peut alors être
exprimé par un angle (souvent noté θ en degrés ou en radians) et une distance :
rayon du cercle (souvent notée r).

Coordonnées polaires : exemple
Soit le point M situé dans le plan.
Coordonnées polaires : M(r = 4, θ = 60◦)
Coordonnées cartésiennes :

— x = r cos θ = 4 cos(60◦) = 4× 1
2
= 2

— y = r sin θ = 4 sin(60◦) = 4×
√
3
2

= 2
√
3

x

y

O

M(2, 2
√
3)

r = 4

θ = 60◦

y = 2
√
3

1 2 3 4

1

2

3

4

1.2.1 Apport mathématique : produit scalaire

Le produit scalaire de deux vecteurs u⃗ et v⃗ dans un plan est défini par :

u⃗ · v⃗ = ∥u⃗∥ × ∥v⃗∥ × cos θ

où θ est l’angle entre les deux vecteurs, et ∥u⃗∥, ∥v⃗∥ sont leurs normes respectives.

Si u⃗ = (ux, uy) et v⃗ = (vx, vy), alors

u⃗ · v⃗ = uxvx + uyvy

Interprétation projective : Le produit scalaire peut aussi être vu comme la
projection orthogonale du vecteur v⃗ sur le vecteur u⃗ multipliée par la norme de u⃗.
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Plus précisément :
u⃗ · v⃗ = ∥u⃗∥ × ∥proju⃗(v⃗)∥

où proju⃗(v⃗) est la projection de v⃗ sur u⃗.

u⃗ · v⃗ = u⃗ ·
−−→
OH = OA×OH

AO H u⃗

v⃗

B
u⃗ · v⃗ = u⃗ ·

−−→
OH = −OA×OH

AOH u⃗

v⃗

B

Figure 1.5 – Définition du produit scalaire par projection orthogonale

Exercice d’application. Exprimer l’angle θ en fonction de u⃗ et v⃗.

Solution

On sait que :
u⃗ · v⃗ = ∥u⃗∥∥v⃗∥ cos(θ)

et
θ = arccos (cos(θ))

On en déduit :
cos(θ) =

u⃗ · v⃗
∥u⃗∥∥v⃗∥

⇒ θ = arccos

(
u⃗ · v⃗

∥u⃗∥∥v⃗∥

)

Exercice 27. Soient deux vecteurs u⃗ = (3, 4) et v⃗ = (5, 2). Calculer l’angle θ entre
ces deux vecteurs en degrés.

Exercice 28. La cinématique d’un athlète réalisant un squat est enregistrée par
capture du mouvement. À un instant donné, on extrait les coordonnées des vecteurs
jambe et cuisse :

−−−−→
jambe = (0.4, 0.2) et

−−−−→
cuisse = (0.3, 0.6)

a. Calculer l’angle du genou θ via la formule du produit scalaire
b. Calculer l’angle du genou θ via les formules de trigonométrie

1.2.2 Lien entre mouvement linéaire et mouvement circulaire

Considérons un point matériel qui décrit un mouvement circulaire de rayon R
autour d’un centre O. La position du point peut être repérée par l’angle θ(t) (en
radians) mesuré depuis une direction de référence.
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Par définition, on a pu voir que la longueur de l’arc s parcourue sur le cercle est
proportionnelle à l’angle θ :

s = Rθ

En dérivant par rapport au temps, on trouve :

ds

dt
=

d

dt
(Rθ) = R

dθ

dt

Or :
v =

ds

dt
et ω =

dθ

dt

Donc :
v = Rω

De plus, on a :

a =
dv

dt
=

d

dt
(Rω) = R

dω

dt

Or :
α =

dω

dt

Donc :
a = Rα

On obtient ainsi les relations entre grandeurs angulaires et linéaires :

s = Rθ ; v = Rω ; a = Rα

Il est également possible de trouver, en fonction des sources, la notation suivante :

s = Rθ ; v = Rθ̇ ; a = Rθ̈
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Analyse dimensionnelle

L’analyse dimensionnelle permet de vérifier la cohérence d’une formule en comparant
les dimensions physiques des grandeurs :

— Longueur : [L] ; Temps : [T ] ; Masse : [M ].
— La vitesse : [v] = [L][T ]−1 ; l’accélération : [a] = [L][T ]−2.
— L’angle (en radian) est adimensionné : [θ] = 1 ; donc [θ̇] = [T ]−1 et [θ̈] = [T ]−2.

Application aux relations s = Rθ, v = Rθ̇, a = Rθ̈ :

[s] = [R][θ] = [L] · 1 = [L], [v] = [R][θ̇] = [L] · [T ]−1 = [L][T ]−1,

[a] = [R][θ̈] = [L] · [T ]−2 = [L][T ]−2.

Les trois égalités sont donc dimensionnellement cohérentes.

Exercice d’application. On considère un mouvement circulaire de rayon R avec

θ(t) = θ0 + ω0 t+
1
2
α t2,

où θ0 est un angle initial, ω0 une vitesse angulaire initiale et α une accélération
angulaire constante.
Vérifier par l’analyse dimensionnelle que chaque terme de θ(t) a la même dimension.

Solution.

[θ0] = 1, [ω0t] = [T ]−1 · [T ] = 1,
[
1
2
αt2

]
= [T ]−2 · [T ]2 = 1.

Les trois termes sont adimensionnés ⇒ somme cohérente : [θ(t)] = 1.

Exercice 29. Un point P se déplace sur un cercle de rayon 5 cm centré à l’origine.
À l’instant t = 0, il se trouve à l’angle θ0 = 30◦ et tourne dans le sens horaire avec
une vitesse angulaire constante de ω = 20◦/s.

a. Déterminer la position du point P en coordonnées polaires à t = 3 s
b. Calculer les coordonnées cartésiennes du point P à cet instant
c. Quelle distance le point a-t-il parcourue sur le cercle ?

Exercice 30. Un joueur de tennis effectue un service. L’analyse vidéo montre que
sa raquette décrit un arc de cercle de rayon 80 cm autour de son épaule. Au moment
de l’impact avec la balle, la raquette se trouve à un angle de 45° par rapport à
l’horizontale.

a. Déterminer la position de la raquette en coordonnées polaires et cartésiennes
à l’impact

b. Si la vitesse angulaire de la raquette est de 12 rad/s à l’impact, calculer la
vitesse linéaire de la raquette
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1.2.3 Mouvement circulaire uniforme

Un mouvement circulaire uniforme est le déplacement d’un point matériel dont
la trajectoire est un cercle de rayon R et dont la vitesse v (en bleu sur le schéma)
est constante en norme. Pour étudier les mouvements circulaires, on utilise souvent
le repère de Frenet. C’est un repère local, associé à un point (l’objet en mouvement
ou son centre de masse). Pour un schéma voir figure 1.6.

Alors, dans le repère de Frenet (T⃗ , N⃗), l’accélération d’un point s’écrit :

a⃗ = a⃗t + a⃗n =
dv

dt
T⃗ +

v2

R
N⃗,

où :
— a⃗t =

dv

dt
T⃗ est l’accélération tangentielle (en orange, le long de la tangente

T⃗ ),

— a⃗n =
v2

R
N⃗ est l’accélération normale (en rouge, dirigée vers le centre de

courbure).
Dans le cas d’un mouvement circulaire uniforme, la norme de la vitesse est

constante :
dv

dt
= 0 ⇒ a⃗t = 0⃗.

Ainsi, il ne reste que l’accélération normale qui vaut :

a⃗ = a⃗n =
v2

R
N⃗.

O

M

R

v⃗ (T⃗ )

a⃗n (N⃗)

a⃗t

Figure 1.6 – Repère de Frenet : vecteurs tangent T⃗ et normal N⃗ pour un mouve-
ment circulaire
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Expression de l’accélération centripète en fonction de l’accélération
angulaire.

On considère un point matériel en mouvement circulaire uniforme de rayon R et de
vitesse linéaire v. Sa vitesse angulaire est ω.

Exprimer l’accélération normale a⃗n en fonction de ω.

Solution :

On sait que l’accélération normale est :

a⃗n =
v2

R
N⃗.

Or
v = Rω ⇒ v2 = (Rω)2 = R2ω2.

Donc :
a⃗n =

v2

R
N⃗ =

R2ω2

R
N⃗ = ω2R N⃗.

Exercice 31. Un point M se déplace sur un cercle de rayon R = 2 m avec une
vitesse constante v = 3 m/s.

a. Déterminer l’accélération tangentielle a⃗t et normale a⃗n du point M .
b. Représenter les vecteurs v⃗, a⃗t et a⃗n au point M .

Exercice 32. Un point matériel se déplace sur un cercle de rayon R = 1.5 m avec
une vitesse qui augmente selon v(t) = 2t m/s.

a. Exprimer l’accélération tangentielle a⃗t et normale a⃗n en fonction du temps.
b. Calculer a⃗t et a⃗n à l’instant t = 2 s.

Exercice 33. Un lanceur de marteau fait tourner le marteau lancé autour de
l’athlète avec un rayon R = 1.2 m et une vitesse angulaire ω = 5 rad/s.

a. Calculer l’accélération centripète a⃗n du marteau.
b. Représenter sur un schéma le vecteur vitesse et le vecteur accélération au

point le plus haut du cercle.
c. A quelle vitesse est lancé le marteau ?

1.2.4 Sommation des vitesses linéaires des articulations

La vitesse linéaire de l’extrémité distale est égale à la somme des vitesses linaires
des segments proximaux (en amont).
Exemple :

v⃗main = v⃗épaule + v⃗coude + v⃗poignet
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Exercice 34. Un joueur de hand lance la balle avec les caractéristiques suivantes.
Déterminer la vitesse linéaire de la balle à la sortie du lancer.

— Longueurs des segments : Bras = 0.23 m, Avant-bras = 0.20 m, Main =
0.18 m

— Vitesses angulaires : ωbras = 10 rad/s, ωavant-bras = 15 rad/s, ωmain =
20 rad/s

Exercice 35. Un cycliste effectue un tour de pédalier en 1 s. On notera que la
rotation du pédalier transmet sa vitesse à la chaîne, qui la transmet au pignon, puis
à la roue.

— Rayon du plateau : Rplateau = 10.5 cm
— Rayon du pignon : Rpignon = 3.5 cm
— Rayon de la roue : Rroue = 35 cm

1.3 Étude de cas
Exercice 36. Lancer de poids L’objectif est de déterminer l’angle optimal de
lancer pour maximiser la performance au lancer de poids.

La position du poids lors de l’envol suit les équations horaires de la cinématique :{
x(t) = v0 cosα t

y(t) = −1
2
gt2 + v0 sinα t+ y0

où :
— y0 : hauteur initiale du poids (main du lanceur)
— v0 = 14 m/s : vitesse initiale de lancement
— α : angle d’envol
— g = 10 m/s2 : accélération de la pesanteur

a. Exprimer l’angle d’envol α en fonction des positions (xi, yi) des articulations
de la main et de l’épaule.

b. On suppose que le poids est lancé à une hauteur initiale y0 = 0. Exprimer
la distance parcourue par le poids x(α) en fonction de l’angle d’envol α.
Déterminer l’angle α qui maximise la portée.

c. Considérons que le poids est lancé à une hauteur initiale y0 = 2 m. Exprimer
la portée x(α) et discuter l’angle d’envol qui maximise la performance.
L’obtention de la valeur exacte de alpha relève d’un bonus.
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